SQL Reference
Data Definition Language (DDL)...

Machine Learning Models

 functionality enables you to create a machine learning model, rename the model, export the syntax for the model creation, retrain the model, execute a query against the model, and drop the model.

CREATE MLMODEL

Train a new machine learning model of type <model type> on the result set returned by the SQL SELECT statement. After the database creates the model, <model name> becomes a callable function in SQL SELECT statements. 

Syntax

SQL


model_name

Parameter

Data Type

Description

model name

VARCHAR

The name of the model to create.

model_type

Parameter

Data Type

Description

model type

VARCHAR

The type of machine learning model to create.

These models are supported. You can find full descriptions of each model in Regression Models, Classification Models, Clustering and Dimension Reduction Models, or Other Models.

  • SIMPLE LINEAR REGRESSION
  • MULTIPLE LINEAR REGRESSION
  • POLYNOMIAL REGRESSION
  • LINEAR COMBINATION REGRESSION
  • VECTOR AUTOREGRESSION
  • KMEANS
  • KNN (K Nearest Neighbors)
  • LOGISTIC REGRESSION
  • NAIVE BAYES
  • NONLINEAR REGRESSION
  • FEEDFORWARD NETWORK
  • PRINCIPAL COMPONENT ANALYSIS
  • LINEAR DISCRIMINANT ANALYSIS
  • SUPPORT VECTOR MACHINE
  • DECISION TREE
  • GAUSSIAN MIXTURE MODEL
  • ASSOCIATION RULES

option_list

Parameter

Data Type

Description

option_list

VARCHAR

The options for the specified machine learning model that is specified as a comma-separated list in the format: <option name 1> -> <value 1>, <option name 2> -> <value 2>, and so on. Names and values must be all enclosed in single quotes and are case sensitive with the exception that Boolean values can be true, false, TRUE, or FALSE. Refer to the respective model for the full options list.

Example options list: options(

  'yIntercept' -> '10',

  'metrics' -> 'true'

)

The SQL SELECT statement that serves as the basis for the model must return rows that fit the specified requirements of the model. For example, in multiple linear regression, the first N columns are the independent variables, and the last column is the dependent variable.

You cannot create a machine learning model with an existing schema and name combination.

Example

Assume you created the mldata table that contains the data for the model. Then, you can create the my_model machine learning model based on that data.

SQL


ALTER MLMODEL

Rename a machine learning model. Use the IF EXISTS clause to ignore any models that do not exist.

Syntax

SQL


Parameter

Data Type

Description

model name

VARCHAR

The name of the model to rename.

new model name

VARCHAR

The new name of the model.

Example

SQL


DROP MLMODEL

Drop a machine learning model. Use the IF EXISTS clause to ignore any models that do not exist.

Syntax

SQL


Parameter

Data Type

Description

model name

VARCHAR

The name of the model to drop.

You can drop multiple models by specifying additional names and separating each with commas.

Example

Drop a machine learning model my_model.

SQL


Drop multiple machine learning models.

SQL


EXPORT MLMODEL

Return the SQL statement that can recreate the machine learning model.

Syntax

SQL


Parameter

Data Type

Description

model name

VARCHAR

The name of the model to create.

Example

SQL


Output

SQL


The output SQL statement includes the schema explicitly.

REFRESH MLMODEL

Retrain a machine learning model without changing any model options.

Syntax

SQL


Parameter

Data Type

Description

model name

VARCHAR

The name of the model to retrain.

Example

SQL


Related Links